Exova Warringtonfire Holmesfield Road Warrington WA1 2DS United Kingdom T: +44 (0) 1925 655 116 F: +44 (0) 1925 655 419 E: warrington@exova.com W: www.exova.com

Testing. Advising. Assuring.



#### Title:

The Fire Resistance Performance of a Specimen of a Loadbearing Timber Floor Assembly Protected by a Plasterboard Ceiling Designed to Provide 60 minutes Fire Resistance, Incorporating Twenty Downlight Light Fittings, Tested in Accordance with BS 476: Part 21: 1987,

Clause 7

#### **WF Report No:**

371969



#### Prepared for:

**Hong Kong Diaman International Lighting Co. Ltd** Unit 04, 7/F Bright Way Tower No. 33, Mong Kok Rd, KL Hong Kong.

In Partnership with:

#### **Integral LED**

Unit 6, Iron Bridge Close, Iron Bridge Business Park, London, NW10 0UF, UK

#### Date:

14<sup>th</sup> March 2017

#### **Notified Body No:**

0833



### **Summary**

**Objective** 

To determine the fire resistance performance of a loadbearing timber floor assembly protected by a plasterboard ceiling designed to provide 60 minutes fire resistance, incorporating twenty downlight light fittings, when tested in accordance with Clause 7 of BS 476: Part 21: 1987.

**Sponsor** 

Hong Kong Diaman International Lighting Co. Ltd

Unit 04, 7/F Bright Way Tower No. 33 Mong Kok Rd KL Hong Kong.

**Co-Sponsors** 

**Integral LED** 

Unit 6, Iron Bridge Close, Iron Bridge Business Park, London, NW10 0UF, U

Summary of Tested Assembly

The timber floor had overall nominal dimensions of 4500 mm long by 3000 mm wide and comprised softwood timber joists at 600 mm centres. The upper surface of the floor comprised nominally 22 mm thick tongue and grooved chipboard flooring.

The floor assembly was protected on its underside by a direct fixed ceiling, formed from two layers of 12.5 mm thick British Gypsum Fireline plasterboard, both layers were screw fixed to the underside of the floor joists.

The floor supported an evenly distributed load of 0.746 kN/m<sup>2</sup>.

The ceiling incorporated twenty downlight light fittings.

Nine of which were provided by Integral LED and were referenced as follows:

| Test<br>Ref. | Model Ref.   | Description                                                                                      |
|--------------|--------------|--------------------------------------------------------------------------------------------------|
| Α            | ILDLFR60FXXX | Round, fixed, Agate LED recessed downlight, 60 mm diameter cut-out.                              |
| В            | ILDLFR70EXXX | Round, fixed, Agate LED recessed downlight, 70 mm diameter cut-out.                              |
| С            | ILDLFR70DXXX | Round, fixed, Agate LED recessed downlight, 70 mm diameter cut-out.                              |
| D            | ILDLFR70DXXX | Round, fixed, Agate LED recessed downlight, 70 mm diameter cut-out.                              |
| Е            | ILDLFR70DXXX | Round, fixed, Agate LED recessed downlight with accessory of slim fire, 100 mm diameter cut-out. |
| F            | ILDLFR70DXXX | Square, fixed, LED recessed downlight, 70 mm diameter cut-out                                    |
| G            | ILDLFR70DXXX | Square, fixed, LED recessed downlight, 70 mm diameter cut-out                                    |
| Н            | ILDLFR70EXXX | Square, fixed, LED recessed downlight, 70 mm x 70 mm cut-out                                     |
| I            | ILDLFR70FXXX | Square, fixed, LED recessed downlight, 70 mm x 70 mm cut-out                                     |

Eleven of which were provided by Hong Kong Diaman International Lighting Co. Ltd and were referenced as follows:

| Test<br>Ref. | Model Ref.  | Description                                                                                              |
|--------------|-------------|----------------------------------------------------------------------------------------------------------|
| J            | TC27XXX.XXX | Round, fixed, Agate LED recessed downlight,<br>60 mm nominal diameter (64 mm diameter tested)<br>cut-out |
| K            | TC80XXX.XXX | Round, tiltable, Agate LED recessed downlight, 75 mm diameter cut-out                                    |
| L            | TC70XXX.XXX | Round, tiltable, Agate LED recessed downlight, 75 mm diameter cut-out                                    |
| М            | TC36XXX.XXX | Round, tiltable, Agate LED recessed downlight, 83 mm diameter cut-out                                    |
| N            | TC28XXX.XXX | Round, tiltable, Agate LED recessed downlight, 85 mm diameter cut-out                                    |
| 0            | DC11XXX.XXX | Round, fixed, Agate LED recessed downlight, 74 mm diameter cut-out                                       |
| Р            | DC10XXX.XXX | Round, fixed, Agate LED recessed downlight, 70 mm diameter cut-out                                       |
| Q            | TC85XXX.XXX | Round, fixed, Agate LED recessed downlight, 85 mm diameter cut-out                                       |
| R            | TC26XXX.XXX | Round, fixed, Agate LED recessed downlight, 73 mm diameter cut-out                                       |
| S            | TC33XXX.XXX | Round, fixed, Agate LED recessed downlight, 73 mm diameter cut-out                                       |
| Т            | FHT-086     | Round, fixed, Agate LED recessed downlight, 72 mm diameter cut-out                                       |

#### **Test Results:**

Loadbearing 66 minutes\*

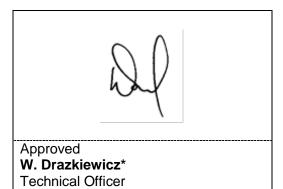
**Integrity** 66 minutes\*

**Insulation** 66 minutes\*

\*The test was discontinued after a period of 66 minutes

Date of Test 23rd October 2016

This report may only be reproduced in full. Extracts or abridgements of reports shall not be published without permission of Exova Warringtonfire.


### **Signatories**

G.A. Eang

Responsible Officer

G. Edmonds\*

Senior Technical Officer



\* For and on behalf of Exova Warringtonfire.

Report Issued

Date: 14th March 2017

This copy has been produced from a .pdf format electronic file that has been provided by **Exova Warringtonfire** to the sponsors of the report and must only be reproduced in full. Extracts or abridgements of reports must not be published without permission of **Exova Warringtonfire**. The pdf copy supplied is the sole authentic version of this document. All pdf versions of this report bear authentic signatures of the responsible **Exova Warringtonfire** staff.

### 

### **Test Procedure**

#### Introduction

The specimen tested was of a loadbearing construction. The test was conducted in accordance with Clause 7 of BS 476: Part 21: 1987, 'Methods for determination of the fire resistance of loadbearing elements of construction'. This test report should be read in conjunction with that Standard and with BS 476: Part 20: 1987, 'Method for determination of the fire resistance of elements of construction (general principles)'.

The purpose of the test was to evaluate the performance of a timber floor construction protected by a ceiling of previously proven fire resistance, when incorporating down lighter fitting assemblies.

The specimen was judged on its ability to comply with the performance criteria for loadbearing capacity, integrity and insulation, as required by BS 476: Part 21: 1987, Clause 7.

#### Fire Test Study Group/EGOLF

Certain aspects of some fire test specifications are open to different interpretations. The Fire Test Study Group and EGOLF have identified a number of such areas and have agreed Resolutions which define common agreement of interpretations between fire test laboratories which are members of the Groups. Where such Resolutions are applicable to this test they have been followed.

#### **Instruction To Test**

The test was conducted on the 24th October 2016 at the request of the test sponsors.

Mr. A. Gooding a representative of the test sponsors witnessed the test.

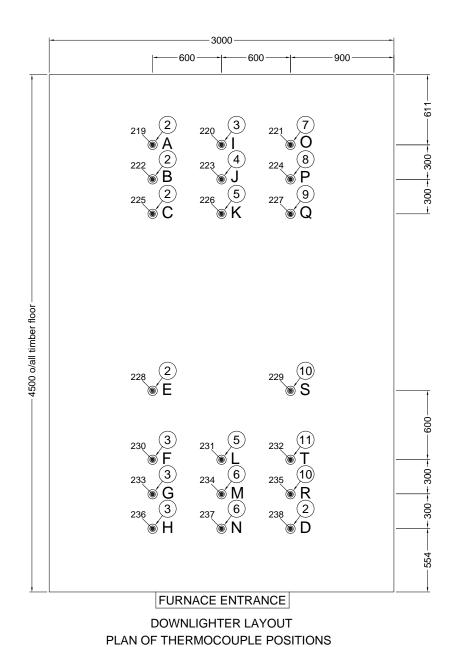
### Test Assembly Construction

A comprehensive description of the test construction is given in the Schedule of Components. The description is based on a detailed survey of the specimens and information supplied by the sponsors of the test.

#### Installation

Representatives of Exova Warringtonfire assembled the floor construction and installed the down lighters on the 17<sup>th</sup> October 2016.

#### Conditioning


The specimens' storage, construction, and test preparation took place in the test laboratory over a total combined time of 8 days. Throughout this period of time both the temperature and the humidity of the laboratory were measured and recorded as being within a range of from 8°C to 16°C and 47% to 65% respectively.

## **Test Specimens**

Figure 1- General Elevation of Test Specimens

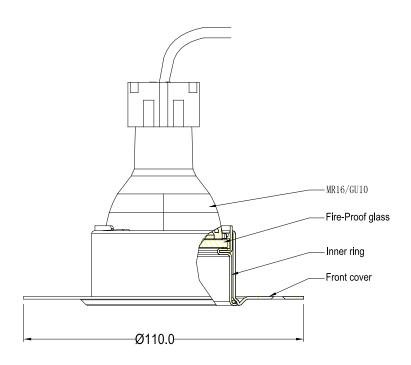



Figure 2 – Details of Downlighter Positions



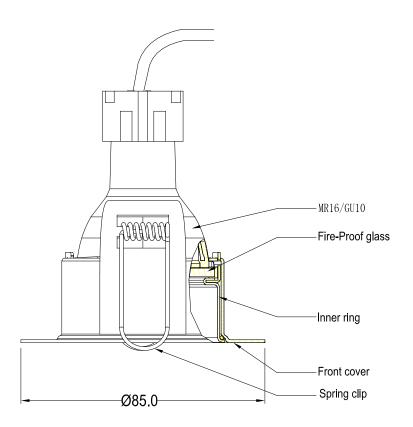

• Mineral insulated thermocouples at mid-cavity height

Figure 3 – Details of Downlighter Specimen A



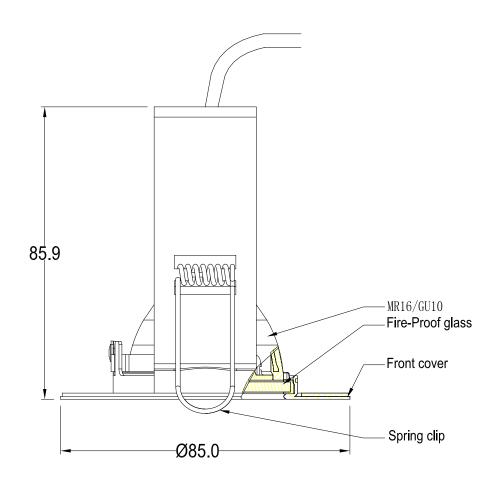

Fixed
ILDLFR60FXXX
Cut out: \$\phi\$60

Figure 4 – Details of Downlighter Specimen B



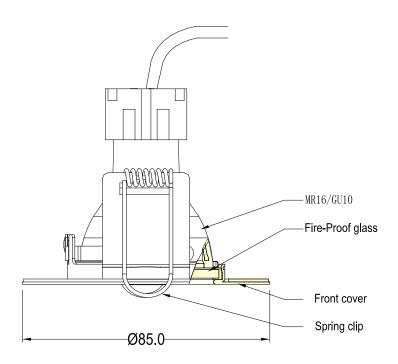

Fixed ILDLFR70EXXX Cut out: \phi70

Figure 5 – Details of Downlighter Specimen C



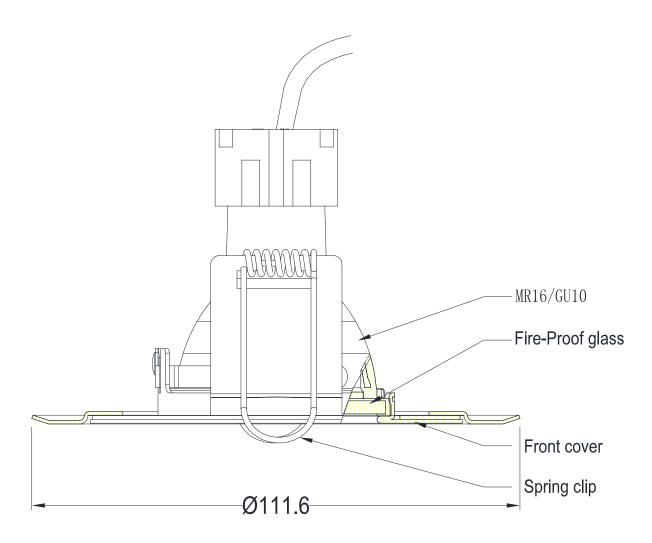
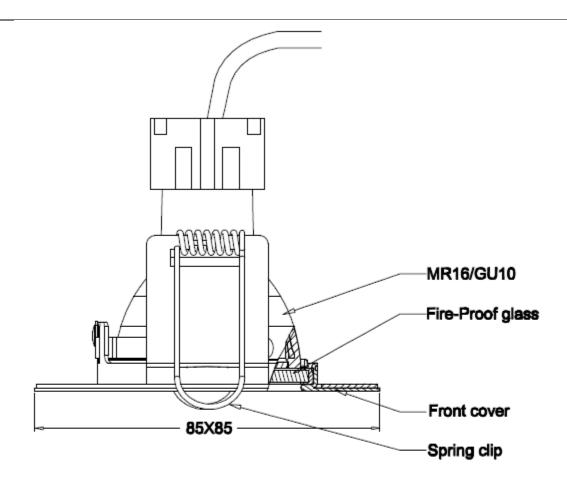

Fixed
ILDLFR70DXXX
with bracket
Cut out: \$\phi\$70

Figure 6 – Details of Downlighter Specimen D



Fixed
ILDLFR70DXXX
Cut out: • 70


Figure 7 – Details of Downlighter Specimen E



Fixed
ILDLFR70DXXX
accessory of Slim Fire

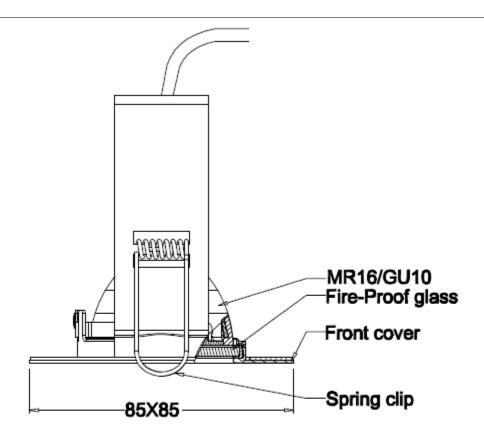

Cut out: \phi 100mm

Figure 8 – Details of Downlighter Specimen F



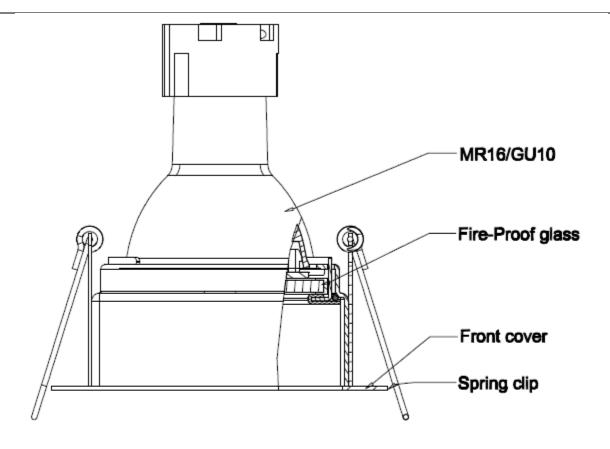

Fixed model
ILDLFR70DXXX
Slim fire square bezel
Cut out:Ø70mm

Figure 9 – Details of Downlighter Specimen G



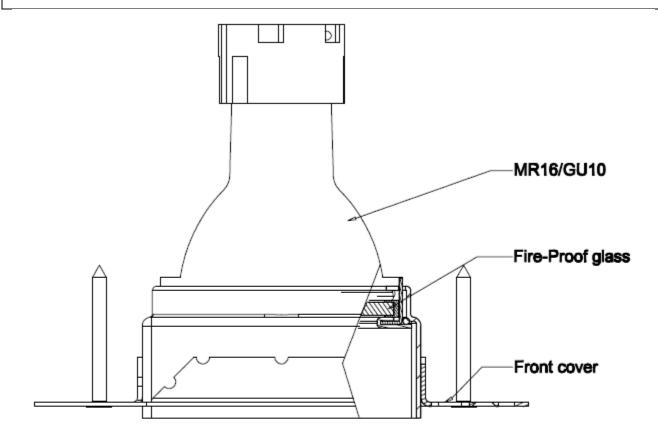

Fixed model
ILDLFR70DXXX
Slim fire square bezel with bracket
Cut out:Ø70mm

Figure 10 – Details of Downlighter Specimen H



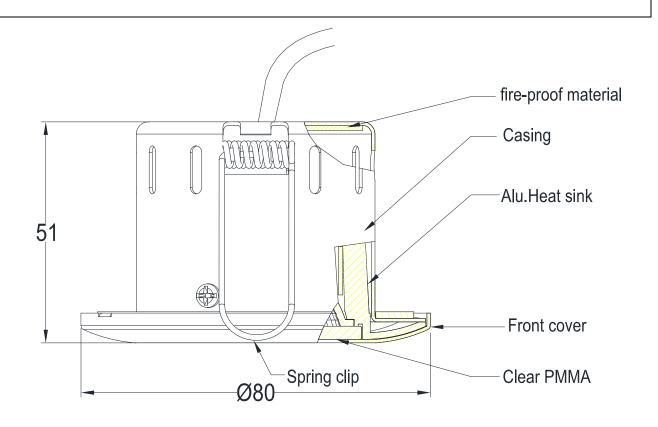
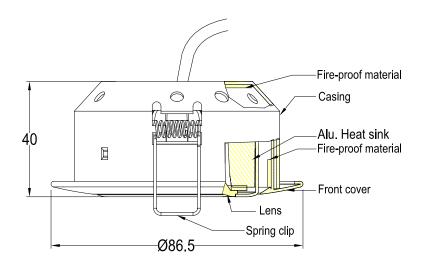

Fixed model
ILDLFR70EXXX
Slim fire square bezel
Cut out:Ø70X70mm

Figure 11 – Details of Downlighter Specimen I



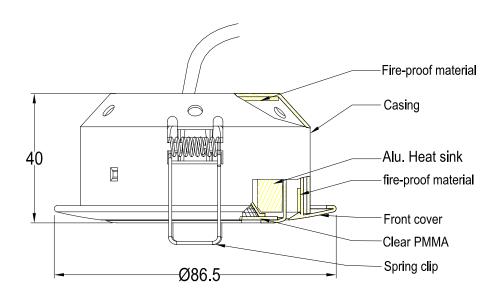
Fixed model
ILDLFR70FXXX
Trimless fire square bezel
Cut out:Ø70X70mm


Figure 12 – Details of Downlighter Specimen J



With reflector:TC27XXX.XXX

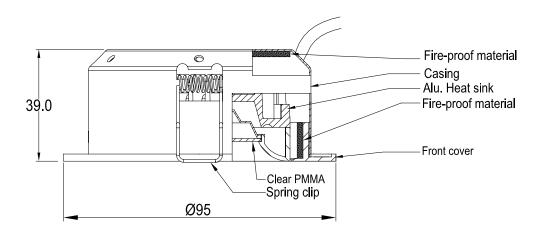
Cut out: \phi60 Nominal, \phi64 Tested


Figure 13 – Details of Downlighter Specimen K



With lens:TC80XXX.XXX

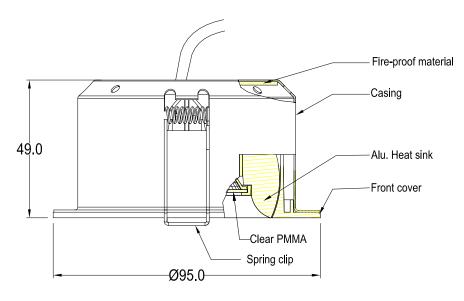
Cut out: \phi75


Figure 14 – Details of Downlighter Specimen L



With reflector: TC70XXX. XXX

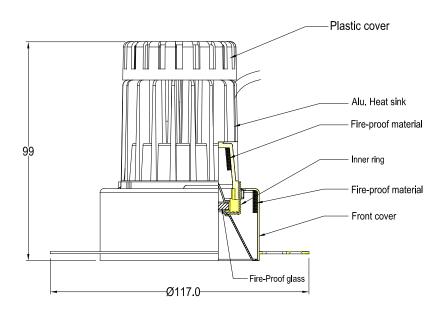
Cut out: \phi75


Figure 15 – Details of Downlighter Specimen M



With reflector:TC36XXX.XXX

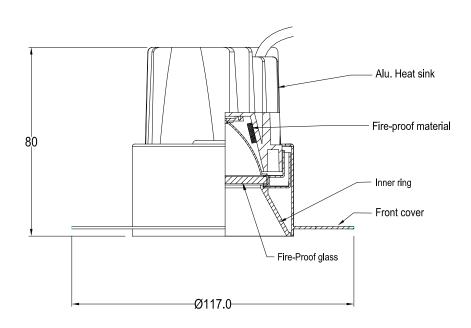
Cut out: \phi 83


Figure 16 – Details of Downlighter Specimen N



With reflector: TC28XXX. XXX

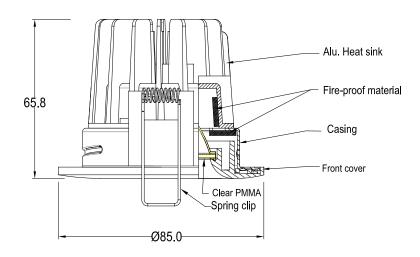
Cut out:**Ø**85


Figure 17 – Details of Downlighter Specimen O



With reflector:DC11XXX.XXX

Cut out: \phi74


Figure 18 – Details of Downlighter Specimen P



With reflector:DC10XXX.XXX

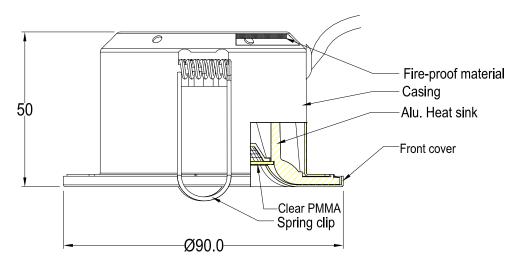
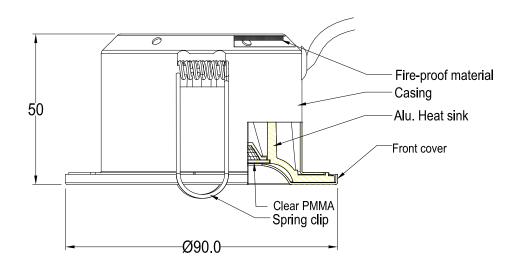

Cut out: \phi70

Figure 19 – Details of Downlighter Specimen Q



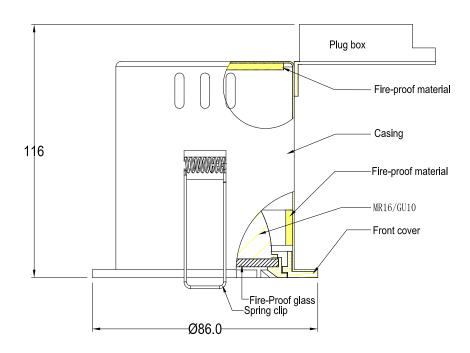
Fixed
With reflector:TC85XXX.XXX
Cut out: \$\phi75\$


Figure 20 – Details of Downlighter Specimen R



With reflector: TC26XXX. XXX

Cut out: \phi73


Figure 21 – Details of Downlighter Specimen S



With reflector: TC33XXX. XXX

Cut out: \phi73

Figure 22 – Details of Downlighter Specimen T



With reflector:FHT-086

Cut out: \phi72

### **Schedule of Components**

(Refer to Figures 1 to 22)

(All values are nominal unless stated otherwise) (All other details are as stated by the sponsors)

<u>Item</u> <u>Description</u>

1. Timber Floor

1.1 Floor Joists

Material : British Home-grown, rough sawn softwood, kiln dried

Grade : C16, to BS EN 519

Density : 438 kg/m<sup>3</sup>

Size : 45 mm x 196 mm

Joist centres : 600 mm

1.2 Floor Boards

Material : Flooring grade tongue and groove chipboards

Reference : FSC E1 P5
Thickness : 22 mm
Size : 600 mm wide

Fixing : Fixed in a single layer with 6 mm diameter x 60 mm long

countersunk steel screws to floor joists at 300 mm

centres

1.3 Ceiling Boards

Manufacturer : British Gypsum

Type / reference : Gyproc Fireline Wallboard

Density : 761 kg/m<sup>3</sup>

Thickness : 2 off layers 12.5 mm thick

Fixing

i. method : The boards were screw fixed to the soffit of the joists

with all joints staggered

ii. fixings : Drywall self drill and tapping screws 38 mm

iii. frequency : 150 mm centres along joints and 150 mm to the

perimeter of the ceiling

2. Specimens A, B, C, D, E

Manufacturer : Integral LED

Type : Round, fixed, Agate LED recessed downlight

Reference : See Figures 3 to 7.

Materials

i. front coverii. inner ringii. Steel

iii. spring : Stainless steel iv. diffuser : Pyrex glass

Overall dimensions and construction : See Figures 3 to 7.

Cut out size : Varies see relevant figure.

Driver : None Lamp : GU10/MR16 <u>Item</u> <u>Description</u>

3. Specimen F, G, H, I

Manufacturer : Integral LED

Type : Square, fixed, LED recessed downlight

Reference : See Figures 8 to 11.

Materials

i. front cover : Steel

ii. spring : Stainless steel iii. diffuser : Pyrex glass

Overall dimensions and construction : Please see Figures 8 to 11 Cut out size : Various see relevant figures

Driver : None Lamp : GU10/MR16

4. Specimen J

Manufacturer : Dongguan Diaman Lighting Company Limited Type : Round, fixed, Agate LED recessed downlight

Reference : TC27XXX.XXX

Materials

i. casingii. front coveriii. front coveriii. front coveriii. front coveriii. front coveriii. front cover

iv. spring: Stainless steelv. diffuser: Clear PMMAvi. heat sink: Die cast Aluminium

Overall dimensions and construction : See figure 12
Cut out size : 64 mm
Driver : None

5. Specimen K, L

Manufacturer : Dongguan Diaman Lighting Company Limited Type : Round, tiltable, Agate LED recessed downlight

Reference : See Figures 13 and 14

Materials

i. casingii. front coveriii. inner ringiv. front coveriv. steeliv. steel

v. spring : Stainless steel
vi. diffuser : Lens / Clear PMMA
vii. heat sink : Die cast Aluminium

viii. fire proofing : 1.5 mm thick fire proofing between inner and outer ring

and the top of the casing.

Overall dimensions and construction : See Figures 13 and 14.

Cut out size : 75 mm
Driver : None

<u>Item</u> <u>Description</u>

6. Specimen M, N

Manufacturer : Dongguan Diaman Lighting Company Limited Type : Round, tiltable, Agate LED recessed downlight

Reference : See Figures 15 and 16

Materials

i. casing: Steelii. front cover: Steeliii. inner ring: Steeliv. front cover: Steel

v. spring : Stainless steel
vi. diffuser : Clear PMMA
vii. heat sink : Die cast Aluminium

viii. fire proofing (specimen 15) : 1.5 mm thick fire proofing fitted inside around the casing

and on the top casing

ix. fire proofing (specimen 16) : 1.5 mm thick fire proofing fitted on the top of casing

Overall dimensions and construction : See Figures 15 and 16

Cut out size : Varies
Driver : None

7. Specimens O

Manufacturer : Dongguan Diaman Lighting Company Limited Type : Round, fixed, Agate LED recessed downlight

Reference : DC11XXX.XXX

Materials

i. casing: Steelii. front cover: Steeliii. inner ring: Steeliv. diffuser: Pyrex glass

v. plastic cover : PC

vi. fire proofing : 1.5 mm thick fire proofing fitted inside around the heat

sink

Overall dimensions and construction : 74 mm

Cut out size : See Figure 17

Driver : None

8. Specimens P

Manufacturer : Dongguan Diaman Lighting Company Limited Type : Round, fixed, Agate LED recessed downlight

Reference : DC10XXX.XXX

Materials

i. casingii. front coveriii. inner ringiv. diffuseriii. Steeliv. diffuseriv. diffuseriv. Steeliv. diffuseriv. steeliv. pyrex glass

v. fire proofing : 1.5 mm thick fire proofing fitted inside around the heat

sink

Overall dimensions and construction : See Figure 18

Cut out size : 70 mm
Driver : None

<u>Item</u> <u>Description</u>

9. Specimen Q

Manufacturer : Dongguan Diaman Lighting Company Limited Type : Round, fixed, Agate LED recessed downlight

Reference : TC85XXX.XXX

Materials

i. casingii. front coverii. Steel

iii. front cover: Die cast Aluminiumiv. spring: Stainless steelv. diffuser: Clear PMMA

vi. fire proofing : 1.5 mm thick fire proofing fitted inside around the heat

sink and casing

Overall dimensions and construction : See Figure 19

Cut out size : 75 mm
Driver : None

:

10. Specimens R, S

Manufacturer : Dongguan Diaman Lighting Company Limited Type : Round, fixed, Agate LED recessed downlight

Reference : See Figures 20 and 21

Materials

i. casing: Steelii. front cover: Steeliii. front cover: Steel

iv. springv. diffuserStainless steelClear PMMA

vi. fire proofing : 1.5 mm thick fire proofing fitted on the top of casing

Overall dimensions and construction : See Figures 20 and 21

Cut out size : 73 mm
Driver : None

11. Specimen T

Manufacturer : Dongguan Diaman Lighting Company Limited Type : Round, fixed, Agate LED recessed downlight

Reference : FHT-086

Materials

i. casingii. front coveriii. inner ringiii. Steeliii. inner ringiii. Steel

iv. spring: Stainless steelv. diffuser: Clear PMMA

vi. fire proofing : 1.5 mm thick fire proofing fitted inside around the casing

and on the top of casing

Overall dimensions and construction : See Figure 22
Cut out size : 72 mm
Driver : None

### Instrumentation

#### **General**

The instrumentation was provided in accordance with the requirements of the Standard.

#### **Furnace**

The furnace was controlled so that its mean temperature complied with the requirements of BS 476: Part 20: 1987, Clause 3.1. using eight mineral insulated thermocouples distributed over a plane 100 mm from the underside of the ceiling.

### Thermocouple Allocation

Thermocouples were provided to monitor the unexposed surface of the floor assembly and the output of all instrumentation was recorded at no less than one minute intervals as follows:

The locations and reference numbers of the various unexposed surface and internal thermocouples are shown in Figure 1.

## Roving Thermocouple

A roving thermocouple was available to measure temperatures on the unexposed surface of the specimen at any position which might appear to be hotter than the temperatures indicated by the fixed thermocouples.

#### Integrity criteria

Cotton pads and gap gauges were available to evaluate the impermeability of the test construction to hot gases.

#### **Furnace Pressure**

After the first five minutes of testing and for the remainder of the test, the furnace atmospheric pressure was controlled so that it complied with the requirements of BS 476: Part 20: 1987, Clause 3.2.2. The calculated pressure differential relative to the laboratory atmosphere at a position 100 mm below the underside of the assembly was 20 (+0, -2) Pa.

## **Test Observations**

| Time |      | All observations are from the unexposed face unless noted otherwise.                                                                                     |
|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| mins | secs | The ambient air temperature in the vicinity of the test construction was 12°C at the start of the test with a maximum variation of -1°C during the test. |
| 00   | 00   | The test commences.                                                                                                                                      |
| 05   | 00   | Paper face of the ceiling ignites.                                                                                                                       |
| 10   | 00   | No visible significant change to the unexposed surface of the specimen.                                                                                  |
| 15   | 00   | Slight amount of smoke/steam is being released from the ends of the floor.                                                                               |
| 20   | 00   | The light fittings appear to be remaining in place in the ceiling.                                                                                       |
| 25   | 00   | The ceiling is radiating a dull orange colour on the exposed face.                                                                                       |
| 30   | 00   | The test specimen is maintaining its loadbearing capacity, integrity, and insulation.                                                                    |
| 40   | 00   | The ceiling is radiating an orange colour on the exposed face.                                                                                           |
| 42   | 00   | Smoke/steam is being released from the ends of the specimen.                                                                                             |
| 45   | 00   | Small section of the ceiling is falling away on the exposed face.                                                                                        |
| 48   | 00   | No visible significant changes to the unexposed surface of the specimen.                                                                                 |
| 55   | 00   | The gaps between the joints in the ceiling are widening on the exposed face.                                                                             |
| 60   | 00   | The test specimen is maintaining its loadbearing capacity, integrity, and insulation.                                                                    |
| 66   | 00   | The test specimen is maintaining its loadbearing capacity, integrity, and insulation.                                                                    |
|      |      | The test is discontinued.                                                                                                                                |

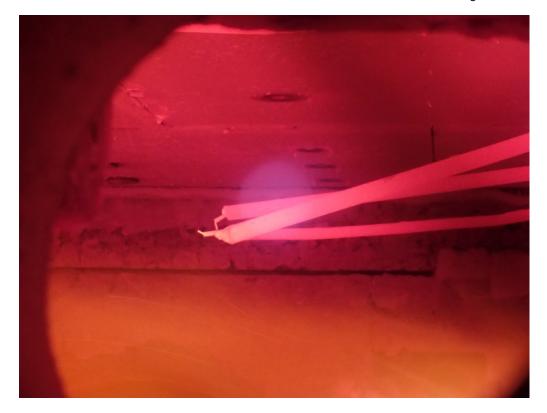
# **Test Photographs**

The exposed face of the assembly prior to testing



The unexposed face of the assembly after 10 minutes of testing




The unexposed face of the assembly after 20 minutes of testing



The unexposed face of the assembly after 40 minutes of testing



The exposed ceiling assembly after a test duration of approximately 40 minutes



The unexposed face of the assembly after 60 minutes of testing



# **Temperature & Deflection Data**

Mean furnace temperature, together with the temperature/time relationship specified in the Standard

| Time | Specified   | Actual      |
|------|-------------|-------------|
|      | Furnace     | Furnace     |
| Mins | Temperature | Temperature |
|      | Deg. C      | Deg. C      |
| 0    | 20          | 35          |
| 2    | 445         | 474         |
| 4    | 544         | 526         |
| 6    | 603         | 600         |
| 8    | 646         | 638         |
| 10   | 678         | 674         |
| 12   | 706         | 694         |
| 14   | 728         | 718         |
| 16   | 748         | 742         |
| 18   | 766         | 778         |
| 20   | 781         | 792         |
| 22   | 796         | 795         |
| 24   | 809         | 807         |
| 26   | 820         | 806         |
| 28   | 832         | 833         |
| 30   | 842         | 845         |
| 32   | 852         | 850         |
| 34   | 860         | 862         |
| 36   | 869         | 865         |
| 38   | 877         | 875         |
| 40   | 885         | 886         |
| 42   | 892         | 897         |
| 44   | 899         | 903         |
| 46   | 906         | 913         |
| 48   | 912         | 916         |
| 50   | 918         | 920         |
| 52   | 924         | 924         |
| 54   | 930         | 935         |
| 56   | 935         | 939         |
| 58   | 940         | 942         |
| 60   | 945         | 944         |
| 62   | 950         | 949         |
| 64   | 955         | 955         |
| 66   | 960         | 964         |

### Individual and mean temperatures recorded on the unexposed surface of the floor assembly

| Time    | T/C    | T/C    | T/C    | T/C    | T/C    | Mean   |
|---------|--------|--------|--------|--------|--------|--------|
| Time    | Number | Number | Number | Number | Number | Wican  |
| Mins    | 211    | 212    | 213    | 214    | 215    | Temp   |
| IVIIIIO | Deg. C |
| 0       | 21     | 21     | 21     | 20     | 19     | 20     |
| 2       | 21     | 21     | 21     | 20     | 18     | 20     |
| 4       | 21     | 21     | 21     | 20     | 18     | 20     |
| 6       | 21     | 21     | 21     | 20     | 18     | 20     |
| 8       | 21     | 21     | 21     | 20     | 18     | 20     |
| 10      | 21     | 21     | 21     | 20     | 18     | 20     |
| 12      | 21     | 21     | 21     | 20     | 19     | 20     |
| 14      | 22     | 22     | 21     | 21     | 19     | 21     |
| 16      | 23     | 23     | 21     | 22     | 20     | 22     |
| 18      | 24     | 25     | 22     | 23     | 21     | 23     |
| 20      | 26     | 26     | 23     | 25     | 23     | 25     |
| 22      | 27     | 28     | 24     | 27     | 24     | 26     |
| 24      | 29     | 30     | 25     | 29     | 26     | 28     |
| 26      | 31     | 32     | 26     | 31     | 28     | 30     |
| 28      | 33     | 34     | 28     | 34     | 30     | 32     |
| 30      | 34     | 36     | 29     | 35     | 31     | 33     |
| 32      | 36     | 38     | 30     | 38     | 33     | 35     |
| 34      | 37     | 40     | 31     | 40     | 35     | 37     |
| 36      | 39     | 41     | 33     | 41     | 36     | 38     |
| 38      | 40     | 43     | 34     | 43     | 37     | 39     |
| 40      | 42     | 45     | 35     | 44     | 39     | 41     |
| 42      | 44     | 46     | 36     | 46     | 40     | 42     |
| 44      | 45     | 47     | 37     | 47     | 41     | 43     |
| 46      | 46     | 49     | 39     | 48     | 42     | 45     |
| 48      | 48     | 50     | 39     | 49     | 43     | 46     |
| 50      | 49     | 52     | 41     | 50     | 43     | 47     |
| 52      | 51     | 53     | 41     | 51     | 44     | 48     |
| 54      | 52     | 55     | 42     | 51     | 45     | 49     |
| 56      | 54     | 59     | 43     | 52     | 46     | 51     |
| 58      | 57     | 63     | 44     | 53     | 47     | 53     |
| 60      | 61     | 67     | 44     | 54     | 47     | 55     |
| 62      | 65     | 72     | 45     | 56     | 48     | 57     |
| 64      | 70     | 74     | 46     | 58     | 50     | 60     |
| 66      | 73     | 77     | 47     | 61     | 51     | 62     |

## Individual temperatures recorded adjacent to joints in the flooring

| Time | T/C    | T/C    | T/C    |
|------|--------|--------|--------|
|      | Number | Number | Number |
| Mins | 216    | 217    | 218    |
|      | Deg. C | Deg. C | Deg. C |
| 0    | 20     | 20     | 20     |
| 2    | 20     | 20     | 20     |
| 4    | 20     | 20     | 20     |
| 6    | 20     | 20     | 20     |
| 8    | 19     | 20     | 20     |
| 10   | 19     | 20     | 20     |
| 12   | 19     | 20     | 20     |
| 14   | 20     | 21     | 21     |
| 16   | 20     | 21     | 22     |
| 18   | 20     | 22     | 23     |
| 20   | 21     | 23     | 25     |
| 22   | 21     | 25     | 27     |
| 24   | 22     | 26     | 29     |
| 26   | 23     | 29     | 31     |
| 28   | 24     | 31     | 34     |
| 30   | 25     | 34     | 37     |
| 32   | 26     | 36     | 39     |
| 34   | 28     | 39     | 41     |
| 36   | 29     | 41     | 44     |
| 38   | 30     | 43     | 46     |
| 40   | 32     | 45     | 48     |
| 42   | 33     | 46     | 50     |
| 44   | 34     | 48     | 51     |
| 46   | 36     | 49     | 52     |
| 48   | 37     | 50     | 54     |
| 50   | 39     | 51     | 55     |
| 52   | 40     | 52     | 55     |
| 54   | 42     | 53     | 56     |
| 56   | 43     | 55     | 59     |
| 58   | 45     | 57     | 61     |
| 60   | 47     | 60     | 64     |
| 62   | 50     | 64     | 67     |
| 64   | 55     | 69     | 69     |
| 66   | 59     | 76     | 72     |

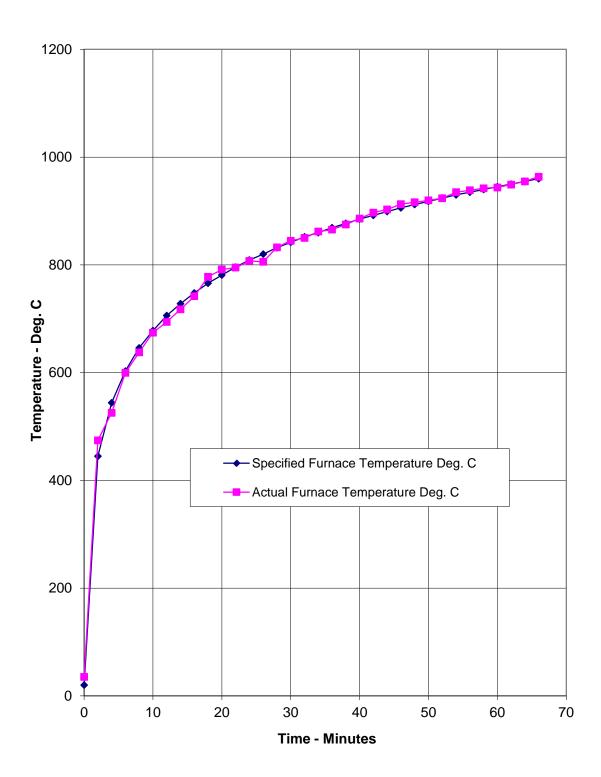
## Individual temperatures recorded adjacent to the light fittings at mid height of the cavity

| Time | T/C    |
|------|--------|--------|--------|--------|--------|--------|--------|
|      | Number |
| Mins | 219    | 220    | 221    | 222    | 223    | 224    | 225    |
|      | Deg. C |
| 0    | 20     | 21     | 21     | 23     | 23     | 23     | 23     |
| 2    | 20     | 21     | 21     | 23     | 23     | 23     | 23     |
| 4    | 22     | 24     | 25     | 24     | 26     | 25     | 29     |
| 6    | 31     | 38     | 38     | 35     | 41     | 45     | 36     |
| 8    | 45     | 52     | 52     | 51     | 53     | 64     | 48     |
| 10   | 59     | 71     | 65     | 65     | 64     | 82     | 56     |
| 12   | 71     | 83     | 76     | 72     | 73     | 85     | 65     |
| 14   | 75     | 93     | 83     | 89     | 76     | 90     | 72     |
| 16   | 79     | 98     | 94     | 97     | 80     | 113    | 76     |
| 18   | 83     | 109    | 104    | 82     | 81     | 132    | 80     |
| 20   | 85     | 108    | 111    | 103    | 85     | 121    | 81     |
| 22   | 87     | 103    | 111    | 98     | 89     | 139    | 86     |
| 24   | 93     | 107    | 107    | 103    | 95     | 171    | 91     |
| 26   | 98     | 113    | 105    | 110    | 101    | 163    | 92     |
| 28   | 101    | 152    | 107    | 120    | 100    | 143    | 95     |
| 30   | 103    | 147    | 113    | 122    | 100    | 155    | 98     |
| 32   | 105    | 139    | 114    | 144    | 100    | 149    | 99     |
| 34   | 105    | 134    | 132    | 143    | 103    | 151    | 102    |
| 36   | 105    | 123    | 130    | 146    | 105    | 153    | 102    |
| 38   | 106    | 116    | 120    | 133    | 106    | 141    | 102    |
| 40   | 107    | 113    | 118    | 124    | 106    | 159    | 103    |
| 42   | 108    | 114    | 118    | 120    | 107    | 158    | 104    |
| 44   | 110    | 116    | 121    | 126    | 109    | 151    | 105    |
| 46   | 113    | 121    | 125    | 125    | 114    | 153    | 109    |
| 48   | 119    | 131    | 136    | 123    | 123    | 160    | 115    |
| 50   | 130    | 148    | 152    | 131    | 138    | 175    | 127    |
| 52   | 148    | 164    | 169    | 148    | 154    | 179    | 143    |
| 54   | 166    | 177    | 183    | 163    | 167    | 185    | 159    |
| 56   | 180    | 190    | 197    | 178    | 180    | 195    | 173    |
| 58   | 194    | 200    | 210    | 190    | 190    | 205    | 185    |
| 60   | 205    | 210    | 220    | 200    | 199    | 216    | 199    |
| 62   | 215    | 222    | 231    | 211    | 207    | 225    | 208    |
| 64   | 227    | 229    | 242    | 218    | 216    | 236    | 218    |
| 66   | 235    | 238    | 250    | 227    | 224    | 245    | 228    |

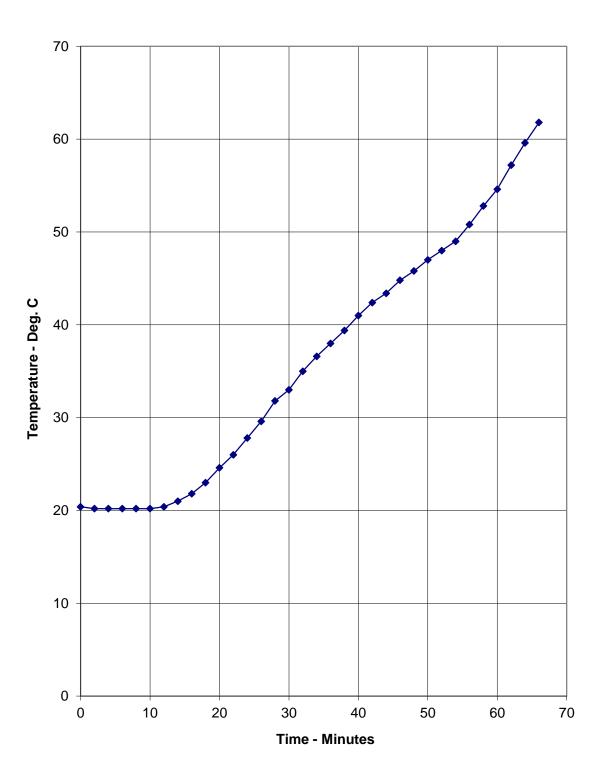
## Individual temperatures recorded adjacent to the light fittings at mid height of the cavity

| Time | T/C    |
|------|--------|--------|--------|--------|--------|--------|--------|
|      | Number |
| Mins | 226    | 227    | 228    | 229    | 230    | 231    | 232    |
|      | Deg. C |
| 0    | 24     | 23     | 22     | 19     | 25     | 19     | 19     |
| 2    | 24     | 23     | 23     | 19     | 24     | 19     | 19     |
| 4    | 27     | 26     | 34     | 21     | 21     | 21     | 21     |
| 6    | 48     | 40     | 49     | 39     | *      | 37     | 30     |
| 8    | 55     | 51     | 58     | 50     |        | 59     | 42     |
| 10   | 63     | 63     | 72     | 57     |        | 71     | 52     |
| 12   | 70     | 81     | 75     | 66     |        | 73     | 64     |
| 14   | 75     | 83     | 83     | 74     |        | 76     | 75     |
| 16   | 79     | 84     | 83     | 81     |        | 85     | 83     |
| 18   | 82     | 88     | 93     | 121    |        | 88     | 90     |
| 20   | 82     | 96     | 88     | 127    |        | 90     | 96     |
| 22   | 86     | 104    | 103    | 99     |        | 91     | 103    |
| 24   | 89     | 112    | 107    | 112    |        | 94     | 101    |
| 26   | 91     | 116    | 130    | 102    |        | 97     | 107    |
| 28   | 93     | 122    | 134    | 105    |        | 101    | 111    |
| 30   | 94     | 120    | 140    | 108    |        | 103    | 124    |
| 32   | 95     | 122    | 123    | 106    | 133    | 106    | 119    |
| 34   | 97     | 118    | 137    | 107    | 130    | 106    | 122    |
| 36   | 98     | 122    | 127    | 107    | 139    | 106    | 125    |
| 38   | 99     | 145    | 125    | 110    | 142    | 107    | 130    |
| 40   | 100    | 132    | 160    | 112    | 146    | 111    | 133    |
| 42   | 102    | 116    | 160    | 115    | 138    | 115    | 134    |
| 44   | 105    | 118    | 131    | 123    | 134    | 114    | 132    |
| 46   | 110    | 120    | 118    | 127    | 132    | 114    | 133    |
| 48   | 119    | 125    | 127    | 132    | 129    | 117    | 135    |
| 50   | 134    | 137    | 135    | 140    | 137    | 127    | 144    |
| 52   | 152    | 158    | 145    | 153    | 149    | 139    | 149    |
| 54   | 168    | 172    | 158    | 168    | 162    | 156    | 158    |
| 56   | 177    | 185    | 169    | 192    | 183    | 173    | 174    |
| 58   | 190    | 197    | 179    | 201    | 202    | 188    | 188    |
| 60   | 199    | 206    | 189    | 210    | 214    | 201    | 201    |
| 62   | 209    | 217    | 199    | 224    | 226    | 212    | 208    |
| 64   | 218    | 224    | 209    | 231    | 238    | 224    | 218    |
| 66   | 226    | 234    | 216    | 241    | 251    | 236    | 229    |

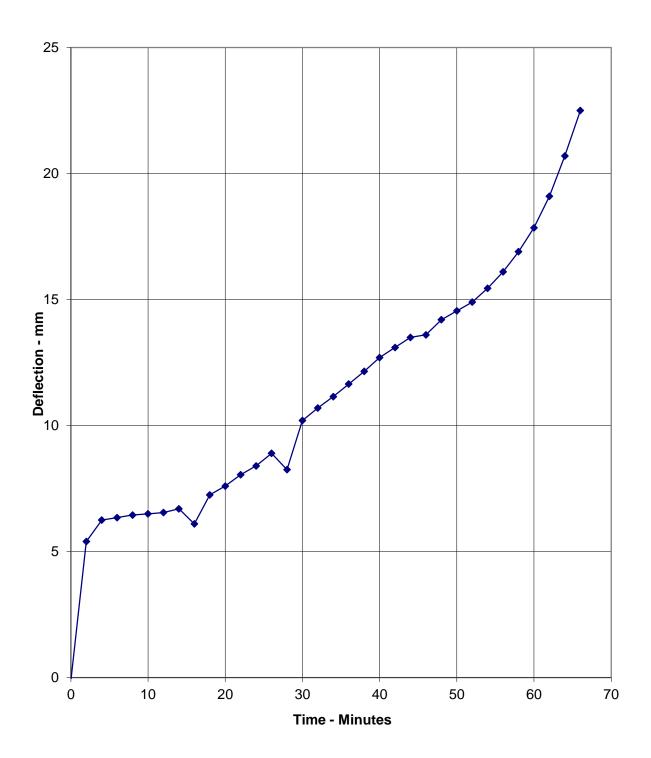
<sup>\*</sup>Thermocouple Malfunction


## Individual temperatures recorded adjacent to the light fittings at mid height of the cavity

| Time | T/C    | T/C    | T/C    | T/C    | T/C    | T/C    |
|------|--------|--------|--------|--------|--------|--------|
|      | Number | Number | Number | Number | Number | Number |
| Mins | 233    | 234    | 235    | 236    | 237    | 238    |
|      | Deg. C |
| 0    | 20     | 20     | 20     | 22     | 23     | 38     |
| 2    | 21     | 20     | 20     | 23     | 23     | 38     |
| 4    | 24     | 22     | 21     | 25     | 25     | 39     |
| 6    | 37     | 35     | 30     | 41     | 36     | 37     |
| 8    | 49     | 47     | 41     | 65     | 46     | 39     |
| 10   | 62     | 69     | 52     | 91     | 59     | 44     |
| 12   | 76     | 107    | 63     | 103    | 69     | 56     |
| 14   | 87     | 124    | 73     | 115    | 77     | 65     |
| 16   | 92     | 124    | 84     | 127    | 83     | 76     |
| 18   | 96     | 116    | 95     | 100    | 87     | 83     |
| 20   | 106    | 116    | 107    | 110    | 96     | 88     |
| 22   | 123    | 113    | 123    | 134    | 106    | 90     |
| 24   | 118    | 114    | 126    | 123    | 105    | 93     |
| 26   | 127    | 145    | 127    | 116    | 102    | 95     |
| 28   | 143    | 144    | 139    | 119    | 107    | 98     |
| 30   | 1400   | 138    | 147    | 124    | 110    | 103    |
| 32   | 148    | 123    | 152    | 144    | 114    | 109    |
| 34   | 153    | 112    | 154    | 158    | 113    | 112    |
| 36   | 146    | 111    | 160    | 165    | 112    | 114    |
| 38   | 150    | 112    | 130    | 147    | 112    | 119    |
| 40   | 155    | 115    | 140    | 127    | 113    | 115    |
| 42   | 154    | 120    | 132    | 122    | 113    | 116    |
| 44   | 153    | 122    | 135    | 123    | 114    | 114    |
| 46   | 153    | 130    | 137    | 125    | 116    | 114    |
| 48   | 154    | 129    | 139    | 125    | 118    | 116    |
| 50   | 150    | 133    | 140    | 129    | 122    | 118    |
| 52   | 154    | 139    | 142    | 135    | 127    | 124    |
| 54   | 165    | 149    | 152    | 145    | 136    | 132    |
| 56   | 181    | 165    | 166    | 157    | 149    | 145    |
| 58   | 196    | 182    | 181    | 172    | 163    | 159    |
| 60   | 210    | 198    | 195    | 184    | 177    | 174    |
| 62   | 223    | 210    | 208    | 196    | 188    | 183    |
| 64   | 235    | 222    | 218    | 206    | 198    | 195    |
| 66   | 244    | 234    | 228    | 217    | 208    | 204    |


### Deflection and rate of deflection of the floor assembly during the test

| Time | Central    | Rate       |
|------|------------|------------|
|      | Vertical   | of         |
| Mins | Deflection | Deflection |
|      | mm         | mm/min     |
| 0    | 0          | 0          |
| 2    | 5          | 1          |
| 4    | 6          | 0          |
| 6    | 6          | 0          |
| 8    | 6          | 0          |
| 10   | 7          | 1          |
| 12   | 7          | 0          |
| 14   | 7          | 0          |
| 16   | 6          | 0          |
| 18   | 7          | 0          |
| 20   | 8          | 1          |
| 22   | 8          | 1          |
| 24   | 8          | 0          |
| 26   | 9          | 0          |
| 28   | 8          | -1         |
| 30   | 10         | 0          |
| 32   | 11         | 1          |
| 34   | 11         | 0          |
| 36   | 12         | 1          |
| 38   | 12         | 0          |
| 40   | 13         | 1          |
| 42   | 13         | 0          |
| 44   | 14         | 1          |
| 46   | 14         | 0          |
| 48   | 14         | 0          |
| 50   | 15         | 1          |
| 52   | 15         | 0          |
| 54   | 15         | 0          |
| 56   | 16         | 0          |
| 58   | 17         | 0          |
| 60   | 18         | 1          |
| 62   | 19         | 0          |
| 64   | 21         | 1          |
| 66   | 23         | 2          |


### Graph showing specified and actual furnace temperatures



## Graph showing mean unexposed surface temperature of the floor assembly



## Graph showing the central vertical deflection of the floor assembly during the test



# **Load Calculations**

#### 1. Physical Parameters of Timber Joists

Measured Joist dimensions (d x b) : 196 mm deep by 45 mm thick

Mean spacing (M) : 600 mm
Effective span (L) : 4200 mm
Timber grade of joists : C16

2. Parameters - BS 5268: Part 2: 2002

Basic dry stress in bending : 5.3 N/mm² (Table 7)
Modification factor for loading : 1.1 (Table 2.9 (a))
Therefore working stress (F) : 5.83 N/mm²
Nominal density : 370 kg/m³

3. Total Loading Required Per Joist

Moment of Inertia (I) : bd<sup>3</sup>/12

: (45 x 196<sup>3</sup>)/12 : 28235760 mm<sup>4</sup>

Distance from neutral axis to base of joist (y) : 98 mm

Maximum bending stress : FI/y

: (5.83 x 282235760)/98

: 1679739 N/mm<sup>2</sup>
Also maximum bending stress : wL<sup>2</sup>/8

: wL<sup>2</sup>/8 : 1679739 N/mm<sup>2</sup>

Where w = Load per unit length

 $\therefore$  w = (1679739 x 8) / (4200 x 4200)

= 0.76178 N/mm

= 761 N/m

∴Total loading (W) : 3196.2 N

: 325.8 kg

#### 4. Dead Weight

Combined weight of overall specimen:

Actual density of joist : 438 kg/m<sup>3</sup>
Actual density of floor boarding : 665 kg/m<sup>3</sup>
Actual density of ceiling board - 12.5 mm thick: 761 kg/m<sup>3</sup>

Effective width of floor supported per joist (m): 0.6 m

weight of joist: 16.2 kgweight of floorboard: 36.9 kgweight of ceiling (two layers): 81 kg

Total dead weight per joist : 134.1 kg

#### 5. Imposed Load

Imposed load per joist required : total load per joist - dead weight per joist

: 325.8 – 134.1 : 191.7 kg

Assuming even distribution of loading

Maximum imposed load per metre square  $: (191.7 \times 9.81) / (4.2 \times 0.6)$  $: 746 \text{ N/m}^2$ 

: 746 N/m<sup>2</sup> : **0.746 kN/m<sup>2</sup>** : 76 kg/m<sup>2</sup>

#### **Calculation made by**

G.A. Eans

**Checked by** 

G. Edmonds

Senior Technical Officer Fire Resistance Department D. Fitzsimmons
Technical Officer
For and on behalf of
Exova Warringtonfire

# **Performance Criteria and Test Results**

# Loadbearing Capacity

The maximum allowable deflection and the maximum rate of deflection for the specimen, as specified by the Standard, are calculated as 210 mm and 8.9 mm per minute respectively. The allowable rate of deflection is not applicable until the deflection exceeds  $^{1}/_{30}$  of the span (i.e. 140 mm). The test construction satisfied this requirement for the total test duration of 66 minutes.

#### Integrity

It is required that there is no collapse of the specimen floor assembly, no sustained flaming on the unexposed surface and no loss of impermeability. The test construction satisfied this requirement for the total test duration of 66 minutes.

#### Insulation

It is required that the mean temperature rise of the unexposed surface shall not be greater than 140°C and that the maximum temperature rise shall not be greater than 180°C. Insulation failure also occurs simultaneously with integrity failure. The test construction satisfied this requirement for the total test duration of 66 minutes.

# **Ongoing Implications**

#### **Limitations**

The results relate only to the behaviour of the specimen of the element of construction under the particular conditions of test. They are not intended to be the sole criteria for assessing the potential fire performance of the element in use, nor do they reflect the actual behaviour in fires.

The test results relate only to the specimen light fittings tested. Appendix A of BS 476: Part 20: 1987 provides guidance information on the application of fire resistance tests and the interpretation of test data. Application of the result to assemblies of different dimensions or supported in other manners or incorporating different components should be the subject of a design appraisal.

#### Review

The specification and interpretation of fire test methods are the subject of ongoing development and refinement. Changes in associated legislation may also occur. For these reasons it is recommended that the relevance of test reports over five years old should be considered by the user. The laboratory that issued the report will be able to offer, on behalf of the legal owner, a review of the procedures adopted for a particular test to ensure that they are consistent with current practices, and if required may endorse the test report.

# **Conclusions**

# Evaluation against objective

A specimen of a loadbearing timber floor assembly, protected by a plasterboard ceiling incorporating twenty down lighter fittings has been subjected to a fire resistance test in accordance with BS 476: Part 21: 1987, Clause 7.

The evaluation of the assembly against the requirements of BS 476: Part 21: 1987, Clause 7 showed that it satisfied the requirements the periods stated below:

#### **Test Results:**

Loadbearing 66 minutes\*

Integrity 66 minutes\*

**Insulation** 66 minutes\*

<sup>\*</sup>The test was discontinued after a period of 66 minutes.